
A note on Privacy-Preserving Measurements Techniques

Sof́ıa Celi

Brave Software

July 25, 2022

Abstract

A very succint and informal note on Privacy-Preserving Measurements (PPM) techniques and
schemes.

1 Introduction

Aggregate measurements are a way by which systems (servers, cloud servers: the data collectors) can
receive data from a population (a number of users) and compute useful aggregate statistics over them.
While the general idea is to be able to only compute aggregation functions; in practice, systems collect
private/sensitive data prior to even computing the aggregation. This centralized leakage of private
user data poses severe security and privacy risks: attackers can steal and leak (publish) users’ sensitive
data, servers can misuse said users’ data for profit, and intelligence agencies or other entities can use
the data for targeted or mass surveillance.

To mitigate these threats, several mechanisms/protocols have been developed: they aim to provide
a level of both security and of privacy. They have recently been called Privacy-Preserving Measure-
ments (PPM) 1. However, it is not easy to compare which technology/protocol/scheme provides which
property and with what efficiency. We aim to provide a quick note on that.

Analysing the different protocols aiming to provide private aggregate measurements asks for a need
of properly defining security and privacy in their specific context: What type of privacy and security
they claim to attain? What constitutes a failure to preserve either? What is the power of the adversary
whose goal it is to compromise the properties of the scheme? What auxiliary information is available
to the adversary even without access to the user private data in question?

As stated by [Dwo06], a paper by Dalenius [Dal77] stated a desire for something like “semantic
security” in the context of this type of data handling: access to a statistical database should not enable
anyone to learn anything about a user that could not be learned without access. This idealized strong
privacy goal is achieved to a degree by various PPM systems, and it is impossible to fully achieve in
the presence of auxiliary information (information available to the adversary other than from access
to the statistical database). This will be our guiding privacy notion when looking at the schemes.

2 Differential Privacy

As described by [Des21], the core idea of Differential Privacy (DP) is to add some randomness, or
noise, in specific parts of the scheme: to the data collected, to the output of the aggregate statistic (or
function), or to the aggregation itself. It formalizes the goal that the the risk to one’s privacy should
not substantially increase as a result of participating in a statistical database (mainly, of participating
in a survey). DP assumes that users individually contribute a single row of data to a database D. On
D, an algorithm A will be executed to gather some information about the rows, and the output will
be shown. DP, informally, guarantees that it is very hard to reconstruct any individual row of data
from D when observing the output from the algorithm A.

1The IETF has recently created a working group devoted to standardize this privacy-preserving measurements tech-
niques [IET21]

1



2.1 The models

Note that these models could be applied to any of the schemes listed in this note by removing the need
of adding noise at certain points. Note also that beyond DP schemes, an interactive model is rarely
used.

Non-interactive In the non-interactive setting, the system that collects users data, a trusted en-
tity (which could be the sever or a proxy), publishes a “sanitized” version of the collected data.
“Sanitization” here means “anonymization” or “de-identification”. Traditionally, sanitization employs
techniques such as data perturbation and sub-sampling, as well as removing identifiers such as IPs
and/or user-agents (it can also remove names or specific dates) depending on a local policy. After
sanitization, the trusted entity should discard any of the stripped identifiers, and proceed with the
aggregation function.

Interactive In the interactive setting, the data collector, again trusted, provides an interface through
which users may pose queries about the data, and get noisy answers. [Dwo06]

2.2 Notions

Definition 2.1 (ε-differential-privacy). A randomized function K gives ε-differential-privacy if
for all data sets D1 and D2 differing on at most one element, and all S ⊆ Range(K): Pr[K(D1) ∈
S] ≤ exp(ϵ)× Pr[K(D2) ∈ S].

What the definition captures is the notion that the output of the function is similar on both data
sets if you change or remove the one element. The degree of similarity depends on ε: the smaller it
is, the more similar the outputs are. Randomized response, a surveying technique developed in the
1960s [War65], is a mechanism that exemplifies this intuition. An example commonly used to describe
this technique involves a question on a sensitive topic, such as “Are you a member of the Communist
party?”. For this question, the survey respondent (the user) is asked to flip a coin in secret, and answer
“Yes” if it comes up heads (all times), but tell the truth, either a “Yes” or “No”, otherwise (if the coin
comes up tails). Using this procedure, each respondent retains very strong deniability for the “Yes”
answers, since such answers can be most likely attributable to the coin landing on heads. Respondents
can also choose the untruthful answer by flipping another coin in secret, and get strong deniability for
both “Yes” and “No” answers.

This “randomized responses” technique and the notion of ε-differential-privacy achieves privacy
of individual data, irrespective of prior (auxiliary) knowledge. In general, it:

• Preserves the privacy of any kind of information.

• Preserves privacy irrespective of any prior knowledge.

• Allows the quantification of the greatest possible information that an attacker can gain.

• Takes into account “insider conspiracy” (participants of a survey can conspire to de-anonymize
other participants) which degrades the level of privacy.

In some early schemes, the privacy guarantee degrades if the survey is repeated with the same set
of respondents.

There is an slightly “weaker” definition used for Differential Privacy:

Definition 2.2 (δ-approximate ε-differential-privacy). A randomized functionK gives δ−approximate
ε-differential privacy if for all data sets D1 and D2 differing on at most one element, and all
S ⊆ Range(K): Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S] + δ

What the δ-approximate ε-differential-privacy definition captures is to account for an “small
privacy loss”, δ.

2



2.3 Schemes

RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response [EPK14] The
RAPPOR scheme uses randomized response techniques to achieve a level of privacy and collection of
large amounts of data from users. Contrary to the stated limitation, privacy is not degraded if the
survey is repeated with the same set of users. But, this advantage of the scheme opens the avenue to
new attackers.

• A “simple” attacker who has access to a single report (one instantiation of data). This attacker
will be used in the “one-time” model.

• A “window” attacker who has access to multiple reports over a window of time. This attacker
has an extra advantage if the data does not change significantly over the window of time. This
attacker will be used in the “longitudinal” model.

• A “complete” attacker who has unlimited access to all reports over an unlimited time.

RAPPOR builds on the idea of memoization and randomization. It provides a framework for
one-time and longitudinal privacy protection by executing the randomized response step twice with
a memoization step in between. The first step, Permanent randomized response, is used to create a
“noisy” answer which is memoized by the client and permanently reused in place of the real answer. The
second step, Instantaneous randomized response, reports on the “noisy” answer over time, eventually
completely revealing it.

RAPPOR protects against the 3 types of attackers with a strictly bounded parameter. But, it does
not prevent cases where survey collectors manipulate the process and ask selected users to report more
than once, or when users participate in the same survey from multiple devices/accounts. It does not
also strongly preserve longitudinal privacy when the user’s value changes rapidly over time.

In the efficiency and accuracy side, each reporting user performs independent coin flips (they
individually add randomness), which, in practice, translates to perturbed analysis results induced by
the properties of the binomial distribution. This makes the scheme a type of Local differential privacy,
which can be very costly. The overall magnitude of this added random noise (Gausian noise) can
be very large: even in the theoretical best case, the standard deviation grows in proportion to the
square root of the survey count (

√
n, where n is the number of participants), and the randomness is in

practice higher by an order of magnitude. Thus, if a billion users data are analyzed, then, a common
signal from even up to a million reports may be missed. This could be greatly improved if reports are
partitioned; but, in turn, this degrades the privacy guarantees.

PROCHLO: Strong Privacy for Analytics in the Crowd [BEM+17] The PROCHLO scheme
uses optional randomized response techniques in a Encode, Shuffle, Analyze (ESA) architecture. They
define DP in the shuffled model : the local randomness is augmented by a private channel that randomly
permutes a set of user-supplied data, and differential privacy is only required as part of the output of
the shuffler [DP20]. The architecture splits entities into different responsibilities:

• Encoders: encode and encrypt (in a nested manner) the data collected at client level, and,
optionally, add randomness for privacy preservation.

• Shufflers: run as a standalone networked service with the aim of masking the data origin and
confounding data provenance by eliminating metadata and by shuffling (over long periods of
time). They undo one layer of nested encryption and should be trustworthy.

• Analyzers: networked services that receive shuffled data batches, and are responsible for ana-
lyzing or releasing a database after all the remaining layers of encryption. Their cryptographic
key determines the specific analysis outcome and associated privacy protection.

The scheme inherently introduces other kinds of attackers due to the different entities that interact
in their architecture. Mainly:

• Analyzer compromise: it can link different data received, and correlate it with auxiliary infor-
mation.

3



• Shuffler compromise

• Analyzer and shuffler collusion: they will see which users contribute what data.

• Encoder compromise and collusion

The scheme also formalises the properties that differential privacy should guarantee:

• Robustness to auxiliary information: independence of prior knowledge.

• Preservation under post-processing: once DP is executed on data, it cannot be undone.

• Composability and graceful degradation: which should happen when the same user repeat-
edly responds to the survey and changes the response either dramatically or slowly.

Note that PROCHLO expects honest execution of each entity (and, for this reason, uses trusted
hardware and software enclaves).

3 Prio [CGB17]

Prio is a scheme for private aggregation that aims to provide privacy, robustness, and scalability. Prio
works with a small number of servers, and, as long as one of them is honest, the system leaks nearly
nothing about users data, except for what the aggregate statistic itself reveals. It aims to work with a
large number of clients and assumes (and expects) the existence of authenticated encrypted channels
between them (and with the servers).

3.1 Properties

• Robustness: (only maintained if all servers are honest) a coalition of malicious clients cannot
affect the output of the function only by misreporting (willingly or not) their data values.

• Anonymity: the adversary cannot pinpoint which honest client submitted which data even when
the adversary controls all (or a subset) of other clients, chooses and injects data, or controls all
but one server.

• f-privacy: for an aggregation function, f , an adversary, who controls any number of clients and
all but one server, learns nothing about the honest clients’ data xi, except what they can learn
from f(x1...xn). Depending on the aggregation function, Prio either provides this property in
its strongest notion (strong f -privacy) or a “weaker” version that depends on what the function
leaks (f̃ -privacy).

The full definition of f -privacy is as follows:

Definition 3.1 (f -privacy). Assuming there are s servers and n clients, for every subset of at most
s − 1 servers and every subset of at most n clients there exists an efficient simulator that, for every
choice of client inputs (x1, ..., xn), takes as input:

• the public parameters of the scheme,

• the indices of the adversarial clients and servers,

• oracle access to the adversarial participants, and

• the value f(x1, ..., xn)

and outputs a simulation of the adversarial participants’ view of the scheme run whose distribution
is computationally indistinguishable from the distribution of the adversary’s view of the honest scheme
run.

4



3.2 Prior knowledge

The next sections will use some concepts that the reader might be unfamiliar with. We will briefly
explain them now:

• Gossiping: a mechanism that allows for state sharing in distributed systems.

• Secret-Sharing: a cryptographic tool that allows a specific user to “share” a private value x
in a vector of values [x] = ([x]1, ..., [x]n) in such a way that any subset of these values reveals
nothing about x, but all values can be used together to reconstruct x in full. In arithmetic
secret-sharing, [x]i are (usually) random values in a ring ZM subject to the constrain

∑
i[xi] =

x mod M . In boolean secret-sharing, [x]i are (usually) random L-bit integers subject to the
constrain

⊕
i[xi] = x.

3.3 Scheme

We will explain the scheme with the example of sum of one-bit values as the aggregation function (as
in the original Prio paper). In this case, each client holds a one-bit integer xi and the servers want to
compute the sum of the clients’ values ∑

i

xi.

The public parameter is a prime p and all parties hold an arithmetic circuit representing a predicate
V alid : FL → F (where F is some finite field and L is a modest leakage function).

The scheme proceeds as:

• Upload: Each client i splits its value xi into s shares, one per server, using a secret-sharing
scheme. Each client also creates a proof string. The client then sends, over an encrypted and
authenticated channel, one share of its submission and the proof string to each server.

• Aggregate: Upon receiving a share, each server checks that the received value is well formed
by using the received secret-shared non-interactive proofs (a construction that uses arithmetic
circuits). The servers, then, gossip between themselves to determine that the “full” proof is valid.
If it is valid, they proceed. Each server j holds an accumulator value Aj ∈ Fp, initialized at zero.
Upon receiving a share from the ith client (and checking that it is valid), the server adds the
uploaded share into its accumulator: Aj ← Aj + [xi]j ∈ Fp.

• Publish: Once the servers have received a share from each client, they publish their accumulator
values. Computing the sum of the accumulator values

∑
j Aj ∈ Fp outputs the desired sum

∑
i xi

of the clients’ data.

3.4 Attacks and Limits

Prio, in its original design, has some efficiency considerations and some limitations. Mainly:

• Server-to-server communication (for when servers are gossiping, for example) grows neither with
the complexity of the verification circuit V alid nor with the size of the value x; but, server-to-
client communication grows linearly with the size of the V alid circuit. Furthermore, client-side
computation increases linearly with the size of users’ data.

• Certain aggregation functions might leak “extra” information other than the output of the func-
tion. For example, when computing a variance, it leaks the expectation E[X].

• It does not provide robustness in the face of faulty servers, which could be a desirable goal in
some scenarios.

• It relies on arithmetic circuits, which use finite-field multiplication, addition, and multiplication
by constant gates. This makes the size of the proofs grow, which could be detrimental for
client-to-server communication.

• It only allows for numerical data inputs.

5



Furthermore, the original design lists some possible (but not so practical) attacks:

• Selective denial-of-service attack: a network adversary prevents all honest clients except one from
being able to contact the Prio servers. The adversary can then learn this selected clients data.

• Intersection attack: the adversary observes the output of f(x1, ..., xn) of a run of the Prio scheme
with n honest clients. The adversary then forces the nth honest client offline and observes a next
scheme run, in which the servers compute f(x̃1, ..., ˜xn−1). If the clients’ data are the same over
time (xi = x̃i), then the adversary learns the difference between the two runs, which could reveal
client n data xn. Note that this is prevented with DP composability.

3.5 Reducing Leakage

Prio-based schemes allow for identity leakage: IP addresses or HTTP user agents can be seen. This,
in turn, means that the link between client identity and their input is unbroken. In the cases where
maintaining this link is unuseful, Prio-based schemes can be combined with Oblivious HTTP [TW21]
to anonymize the data.

3.6 Variations

The variations of Prio mainly improve its efficiency (especially, in regards to the proof computation
and transmission), but seem to preserve the same properties and notions of attackers (there has not
been many formal analysis of these schemes but the intuition is that they should inherit from the
original Prio). They all also only allow for numerical inputs.

Prio+ [AGJ+21] Prio+ works in the same way as the original design of Prio, but it uses boolean
circuits instead of the arithmetic ones for the proofs. This technique reduces the client’s computational
burden by up to two orders of magnitude (or more depending on the aggregation function) while keeping
servers costs similar to those of the original Prio. The usage of boolean circuits is for proving that users’
data falls within a correct range, and, later, if needed, the circuit can be converted to an arithmetic one
to compute other kind of aggregation functions. While the usage of boolean circuits is very efficient,
the conversion from boolean to arithmetic (for functions other than AND, OR, MAX, and MIN) can
be costly, and overall only moderately increase efficiency when compared to the original Prio.

Prio2 [AG21] Prio2 works in the same way as the original design of Prio, but extends the original
scheme to achieve a degree of differential privacy to the output via amplification of small noise at
the users’ side. The different communication entities of the original scheme have been detailed to
execute specific functionalities. Prio2, for example, uses the notion of a “Leader”, which is an entity
responsible for coordinating (while not being able to neither see nor modify shares): receives encrypted
shares, distributes them to the helpers, and orchestrates the process of verifying and computing the
aggregation. “Helpers” (or “Facilitators”) are responsible for executing the scheme as instructed by
the leader. It further uses a variant of the original secret-shared non-interactive proofs, which improves
the client-to-server communication cost; but it is only specified for their case.

Prio3 [BBC+19, GPRW22] Prio3 works in the same way as the original design of Prio and follows
the variations introduced by Prio2 (without the explicit usage of DP). The main goal of Prio3 is to
generalize the techniques of Prio2 for all kinds of aggregation functions (they use an arithmetic circuit
called “Fully Linear Proof (FLP)”). It is worth noting also that with Prio3, the leader can start
aggregating data proactively before all data in a batch is received.

This scheme is currently considered for standardization at the IETF [GPRW22].

4 STAR [DSQ+21]

A different approach for being able to compute aggregation functions without learning individual data
is to use the privacy notion of k-anonymity [Swe02]. As defined by [Swe02]:

6



Definition 4.1 (k-anonymity). . Let RT (A1, ..., An) be a table and QIRT be the quasi-identifier
associated with it. RT is said to satisfy k-anonymity if and only if each sequence of values in RT [QIRT ]
appears with at least k occurrences in RT [QIRT ].

In a broader sense and more related to the problem at hand, the idea is to learn only data sent by
k-clients (k-heavy-hitters). The server, then, only learns any data from a client if there are at least
k − 1 other clients submitting it. This approach prevents the data collector from learning uniquely
identifying (or uniquely co-occurring patterns of) data from a unique client. This specific definition,
that works on a k−1 notion, could be referred to as k-anonymity threshold aggregation systems.

One type of these schemes is STAR [DSQ+21], which prioritizes efficiency. In STAR, each client
constructs a ciphertext of their data (and any auxiliary data), using an encryption key derived deter-
ministically from either i) any randomness present in the client; and ii) additional randomness provided
by a “randomness server” (note that this server never leans any of the clients data). Then, the client
sends: the ciphertext, a k-out-of -N secret share of the randomness used to derive the encryption key,
and a deterministic tag informing the server which shares to combine. The aggregation server, in turn,
organizes the shares into subsets depending on the specified tags, and recovers the encryption keys
from those subsets of size ≥ K.

STAR aims to:

• Be implemented practically and easily by a wide array of projects: given its low financial costs
and usage of “boring” cryptography.

• Client privacy: as defined by k-anonymity threshold aggregation.

• Correctness: the system must provide correct aggregation.

• Low financial costs: the scheme has low monetary costs (and it is the first one to take this concern
into account).

• Achievable trust requirements: data aggregation systems that rely on multi-round interactions
with a non-colluding party are expensive to maintain.

• Avoid usage of trusted hardware.

• Limit cryptographic complexity.

• Allow for other kinds of inputs other than numerical (unlike the Prio-based schemes).

4.1 Attacks and Limits

STAR does not try to prevent:

• Prevention of Sybil attacks, which are present in all threshold aggregation protocols.

• Leakage-free cryptographic design.

Note also that the aggregation server learns which clients share the same data: it leaks the subsets
of clients that share equivalent measurements. STAR, nevertheless, avoids prefix-based leakage.

4.2 Reducing leakage in STAR

As stated, in STAR, the aggregation server could learn equivalent measurements that clients share. It
also allows for identity leakage: the link between client identity and their input is unbroken. In the
cases where maintaining this link is unuseful, STAR can be combined with:

• Oblivious proxies: an oblivious/anonymizing proxy will strip client identifying information (like
IP addresses) from HTTP requests in such a way that the aggregation server learns nothing
about the client identity. Note that using some of these anonymizing proxies (like Tor) incur on
performance overheads.

• Oblivious HTTP: a proxy with similar anonymization properties as the above but with little
performance overhead [TW21]. Such proxies are intended to be standardized by the IETF, and
to be run by independent entities.

7



Scheme Type of data Privacy Notion Robustness Notion Trust

Prio Only numeric
f -privacy

(or f̃ -privacy)

Preserved only
in the face of
adversarial clients

At least, one server
should be honest

Prio+
Only numeric
(validation is
boolean)

f -privacy

(or f̃ -privacy)

Preserved only
in the face of
adversarial clients

At least, one server
should be honest

Prio2 Only numeric
f -privacy

(or f̃ -privacy)
Should inherit
from Prio (needs review)

At least, one server
should be honest

Prio3 Only numeric
f -privacy

(or f̃ -privacy)
Should inherit
from Prio (needs review)

At least, one server
should be honest

STAR All types Threshold k-anonymity
In all cases up to a
leakage parameter

All parties can be
untrusted

POPLAR All types
f -privacy

(or f̃ -privacy)

Preserved in the
face of adversarial clients,
and up to a leakage
parameter
for one malicious server.

At least, one server
should be honest

Figure 1: Comparison of properties of different schemes.

4.3 Related Schemes

POPLAR [BBCG+21] POPLAR is a scheme very similar to Prio which allows for finding the most
popular strings among a collection of clients, as well as counting the number of clients that hold a
given string. POPLAR targets a similar problem as STAR: the private heavy-hitters problem and the
private subset-histogram problem (in which the servers want to count how many clients hold strings in
a particular set without revealing the set to the clients). The former problem means that: there are
an unbounded number of clients and a small set of “collectors” (servers); each client holds a string,
and, for some threshold t ∈ N , the servers recover every string that more than t clients hold.

POPLAR requires two non-colluding data-collection servers that n clients communicate with. It
preserves client privacy as long as one of the two servers is honest (note that the server(s) may collude
with an unbounded number of malicious clients). It preserves correctness against any number of
malicious clients.

The scheme requires clients to secret-share or distribute a point function (-“incremental distributed
point functions”- evaluating to 1 on their chosen value, and 0 elsewhere) between the two servers. The
servers then combine shares of multiple point functions and reveal the heavy-hitters. The scheme is
not very efficient: for 400,000 clients each holding a 256-bit string, for example, it takes the two servers
54 minutes to compute the k-heavy-hitters. It also leaks all heavy-hitting prefixes, and all information
leaked by the multi-set of honest client inputs. In order to reduce leakage, the authors recommend
using local DP.

This protocol is also considered for standardization at the IETF [GPRW22].

5 Comparison

While all the schemes presented achieve a degree of the intial privacy definition (“access to a statistical
database should not enable anyone to learn anything about a user that could not be learned without
access”), there are difficult to compare and to attest the exact level at which they approach this
definition. Note also, that they all present a common leakage: identity-linkage attacks, unless they use
anonimization/oblivious proxies/mechanisms.

In this section, we will only compare the Prio-based schemes and the “heavy-hitters” ones, as, the
majority of them, claim to be able to apply DP on top. The comparisons can be seen in Figure 1 and
Figure 2.

8



Scheme Leakage
Expressive
Functionality

Efficiency Monetary Cost

Prio

Depending on the
aggregation function
(on the majority,
no leakage)

Can be used
with multiple
aggregation
functions

Slow client-to-server
communication

Prio+

Depending on the
aggregation function
(on the majority,
no leakage)

Can be used
with multiple
aggregation
functions
(but it is costly
to translate
boolean circuits
to arithmetic)

Improved client-to-server
communication

Prio2

Depending on the
aggregation function
(on the majority,
no leakage)

Can be used
with multiple
aggregation
functions

Improved client-to-server
communication

Prio3

Depending on the
aggregation function
(on the majority,
no leakage)

Can be used
with multiple
aggregation
functions

Improved client-to-server
communication

STAR
The server learns which
clients share the
same measurement

Limited use
of different
aggregation
functions

Fast Cheap

POPLAR
Leakage of
all heavy-hitting prefixes

Limited use
of different
aggregation
functions

Slow client-to-server
communication

Costly

Figure 2: Comparison of costs, functionality and leakage of different schemes.

6 User Expectations

While all of the described schemes provide a degree of privacy, they still work with data provided
by users. On many occasions, this data is provided without the explicit knowledge or consent from
the users. Furthermore, users know little about the privacy properties of said schemes, or even if an
specific scheme is used.

As stated in [CKR21], in regards to DP, “while DP is mathematically elegant and computationally
efficient, it can be difficult to understand. Not only is DP typically defined mathematically, the privacy
protections provided by DP are not absolute and require contextualization. DP does not provide binary
privacy (i.e., private or not private), but instead provides a statistical privacy controlled by unitless
system parameters that are difficult to interpret (...). Additionally, DP can be deployed in different
security models, and the choice of model has significant impact on the types of adversarial behavior
the system can tolerate.”

While there has been some insights on the legal and ethical concerns and opportunities of DP
[NW18, CD18, OK20], in the design of these schemes, the voice of the end-user is notably absent
(this absentee is also present in the design of the other schemes presented). It begs to ask: Do users
understand that their data is collected in a privacy-preserving manner? Can users consent to sharing
or remove themselves from a system that uses x scheme? Do they understand the notion of privacy
that is given by an x scheme? Do they know the used scheme and the limitations of it?

The findings of [CKR21] suggest that users care about data disclosure and the privacy of it; but,
giving them a “random” definition of DP does not make them more willing to share their data. We
argue that the same finding can be applied to other schemes: users seem to care about the privacy
of their collected data but fail to understand the degree/type/notion of privacy given by a system.

9



This misunderstanding seems not to be a failure of the user, but rather a failure on the system’s side
(and of the design of the scheme) on creating a proper explanation (or, sometimes, on providing an
explanation at all) of the privacy given. Schemes as the ones presented must provide user-friendly
explanations of themselves (and the privacy they give), and allow for easy user consent and removal
from their systems if wanted. As detailed in regards to Content Moderation [KKL+22], schemes must
emphasize user agency; must be explicit about the exact properties they guarantee; and any change to
either the scheme/property needs user notification, consent and opt-out. This must be an ingrained
consideration of the schemes rather than an application-specific or architectural option.

Furthermore, the ability to opt-out and disclosure of what the data will be used for must always be
present. Even if a scheme preserves privacy, that individual preservation of privacy is not enough for
users to be willing to participate. The “privacy-preserving” data can be used for, while not targeting
users individually, targeting groups (surveys meant to target non-male genders, for example). In these
cases, individual privacy is preserved but group privacy is not.

7 Acknowledgements

Many thanks to Alex Davidson, Damien Desfontaines and Shivan Kaul Sahib for all the reviews,
feedback and support on this informal note.

References

[AG21] Apple and Google. Exposure notification privacy-preserving analytics (enpa). White
Paper, 2021. https://covid19-static.cdn-apple.com/applications/covid19/

current/static/contact-tracing/pdf/ENPA_White_Paper.pdf.

[AGJ+21] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and Antigoni Polychroniadou.
Prio+: Privacy preserving aggregate statistics via boolean shares. Cryptology ePrint
Archive, Report 2021/576, 2021. https://eprint.iacr.org/2021/576.

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-
knowledge proofs on secret-shared data via fully linear PCPs. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
67–97. Springer, Heidelberg, August 2019.

[BBCG+21] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.
Lightweight techniques for private heavy hitters. Cryptology ePrint Archive, Paper
2021/017, 2021. https://eprint.iacr.org/2021/017.

[BEM+17] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan,
David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard Seefeld.
Prochlo. In Proceedings of the 26th Symposium on Operating Systems Principles. ACM,
oct 2017.

[CD18] Rachel Cummings and Deven Desai. The role of differential privacy in gdpr compliance.
2018.

[CGB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation
of aggregate statistics. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 259–282, Boston, MA, March 2017. USENIX Associa-
tion.

[CKR21] Rachel Cummings, Gabriel Kaptchuk, and Elissa M. Redmiles. “I need a better de-
scription”: An investigation into user expectations for differential privacy. CoRR,
abs/2110.06452, 2021.

[Dal77] T. Dalenius. Towards a methodology for statistical disclosure control. Statistik Tidskrift,
15(429-444):2–1, 1977.

10

https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://eprint.iacr.org/2021/576
https://eprint.iacr.org/2021/017


[Des21] Damien Desfontaines. Why differential privacy is awesome. Personal website, 2021.
https://desfontain.es/privacy/differential-privacy-awesomeness.html.

[DP20] Damien Desfontaines and Balázs Pejó. SoK: Differential privacies. PoPETs, 2020(2):288–
313, April 2020.

[DSQ+21] Alex Davidson, Peter Snyder, E. B. Quirk, Joseph Genereux, and Benjamin Livshits.
STAR: distributed secret sharing for private threshold aggregation reporting. CoRR,
abs/2109.10074, 2021.

[Dwo06] Cynthia Dwork. Differential privacy (invited paper). In Michele Bugliesi, Bart Preneel,
Vladimiro Sassone, and Ingo Wegener, editors, ICALP 2006, Part II, volume 4052 of
LNCS, pages 1–12. Springer, Heidelberg, July 2006.

[EPK14] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: Randomized aggre-
gatable privacy-preserving ordinal response. In Gail-Joon Ahn, Moti Yung, and Ninghui
Li, editors, ACM CCS 2014, pages 1054–1067. ACM Press, November 2014.

[GPRW22] Tim Geoghegan, Christopher Patton, Eric Rescorla, and Christopher Wood. Privacy
preserving measurement. IETF draft, 2022. https://www.ietf.org/archive/id/

draft-gpew-priv-ppm-01.html.

[IET21] IETF. Privacy preserving measurement (ppm) working group. IETF working group, 2021.
https://datatracker.ietf.org/wg/ppm/about/.

[KKL+22] Seny Kamara, Mallory Knodel, Emma Llansó, Greg Nojeim, Lucy Qin, Dhanaraj Thakur,
and Caitlin Vogus. Outside looking in: Approaches to content moderation in end-to-end
encrypted systems, 2022.

[NW18] Kobbi Nissim and Alexandra Wood. Is privacy privacy? Philosophical Transaction of the
Royal Society A, 376(2128), 2018.

[OK20] Daniel L. Oberski and Frauke Kreuter. Differential Privacy and Social Sci-
ence: An Urgent Puzzle. Harvard Data Science Review, 2(1), jan 31 2020.
https://hdsr.mitpress.mit.edu/pub/g9o4z8au.

[Swe02] Latanya Sweeney. K-anonymity: A model for protecting privacy. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., 10(5):557–570, oct 2002.

[TW21] Martin Thomson and Christopher Wood. Oblivious HTTP. IETF draft, 2021. https:

//www.ietf.org/archive/id/draft-thomson-ohai-ohttp-00.txt.

[War65] Stanley L. Warner. Randomized response: A survey technique for eliminating evasive
answer bias. Journal of the American Statistical Association, 60(309):63–69, 1965. PMID:
12261830.

11

https://desfontain.es/privacy/differential-privacy-awesomeness.html
https://www.ietf.org/archive/id/draft-gpew-priv-ppm-01.html
https://www.ietf.org/archive/id/draft-gpew-priv-ppm-01.html
https://datatracker.ietf.org/wg/ppm/about/
https://www.ietf.org/archive/id/draft-thomson-ohai-ohttp-00.txt
https://www.ietf.org/archive/id/draft-thomson-ohai-ohttp-00.txt

	Introduction
	Differential Privacy
	The models
	Notions
	Schemes

	Prio 201553
	Properties
	Prior knowledge
	Scheme
	Attacks and Limits
	Reducing Leakage
	Variations

	STAR DBLP:journals/corr/abs-2109-10074
	Attacks and Limits
	Reducing leakage in STAR
	Related Schemes

	Comparison
	User Expectations
	Acknowledgements

