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1 Notation

We recall first the main participants, parameters, cryptographic tools, and notation that we use when
describing both the STAR and POPLAR protocols.

• k is the threshold used for performing server-side aggregation.

• n is the total report size submitted by C clients.

• C is the set of all clients {Ci}i ∈ [n].

• S is the aggregation server.

• O is the randomness server used in STAR.

• m is a message to secret-share.

• t is an integer ∈ N that states in POPLAR that a string σ appears in a list (a1, . . . ac) more
than t times.

• σ is a string to search for in a list.

• l is the length of σ.

2 Overview of STAR [DSQ+22]

Each client constructs a ciphertext by encrypting their measurement (and any auxiliary data) using
an encryption key derived deterministically from i) any randomness present in the client measurement
and ii) additional randomness provided by a “randomness server”. This randomness server never
learns client values or inputs. The client then sends: i) the ciphertext; ii) a k-out-of-n secret share
of the randomness used to derive the encryption key; and iii) a deterministic tag informing the server
which shares to combine. The aggregation server groups reports with the same tag, and recovers the
encryption keys from those subsets of size ≥ k. Thus, the server learns all the measurements that are
shared by at least k clients (along with any auxiliary data).

2.1 Secret Sharing scheme in STAR

In STAR, we use a secret sharing scheme called “adept secret-sharing (ADSS)” [BDR20]. This scheme
provides the following properties (we follow the notation from [BDR20]):

• Reproduciability: the ability to recompute a share, or a vector of shares, as long as you still have
the secret. The scheme is deterministic.

• Authenticity: The recovery procedure either fails or recovers the secret originally associated to
it. This means that shares are committed to one specific secret (and cannot be committed to
anything else). The threshold structure on each share cannot be modified as well.

• Error-correction: The recovery procedure “heals itself” if invalid shares are present (if either they
are corrupted or new shares are added). Notice that this property is slow and can be removed
from the scheme.
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The scheme provides two structures to achieve sets of these properties:

• A secret sharing scheme with an AX transformation: This transforms any secret-sharing scheme
(as Shamir’s Secret-Sharing one [Sha79], for example) into a ADSS with reproduciability and
authenticity.

• A secret sharing scheme with an AX and EX transformations: This transforms any secret-
sharing scheme (as Shamir’s Secret-Sharing one, for example) into a ADSS with reproduciability,
authenticity and error-correction.

The first structure (ADSS with AX) is highly efficient: sharing an m-byte message M will take
O(m) time and, more concretely, about the amount of time to symmetrically encrypt and hash M .
This assumes a fixed number of shareholders C, a fixed access-structure encoding A, a fixed tag T ,
and fixed scheme parameters. Concretely, to share M , one will need to apply a hash function like
SHA-256 to a string that is |A|+ |T |+ k bits longer than M (likely k ∈ {128, 256}), run a blockcipher
like AES in counter mode to generate a pad that is k-bits longer than |M |, and run a sharing under
S1/S2. Message recovery takes the same time as sharing.

The second structure (ADSS with AX and EX) does not impact sharing, but does impact recovery.
It is exponential on the amount of shares passed to the recover procedure (n shares that will be divided
in k subsets). In the worst case, it inspects 2n when there are corrupted shares (but not when there
are omitted shares).

In the STAR protocol (in the original ACM-CCS publication), the authors chose to use ADSS with
AX.

3 Malicious shares and malicious clients

Not having error-correction (or verifiability) opens an attack against the STAR protocol. The assump-
tion of this attack is that there exists a set x of malicious clients that corrupt j amount of shares. In
turn, this means that the recovery procedure will be unable to pinpoint which share is invalid (cor-
rupted): the recovery procedure will halt and the whole batch of k size will be discarded. This gives
the possibility for malicious clients to perform DoS attacks with the goal of discarding sets of honest
measurements. Notice that even if the attacker corrupts an small set of shares, they can still cause
tangible disruption to the whole set of measurements. Note that in this attack we assume that clients
are corrupted but the dealer (the browser, for example) is not.

There are ways to solve this:

• Use ADSS with AX and EX.

• Use a secret sharing scheme with verifiability (Feldman’s scheme [Fel87] or Pedersen scheme
[Ped92]).

• Perform EX with a different construction which is the subject of a publication under review. In
this work we arrive to a construction that achieves O(log n).

3.1 ADSS with AX and EX

Informal description. In [BDR20], correctness expects that Recover(shares) (where |shares| = k)
returns (m, sub), where sub is an authorized subset of some sharing of m, and m is the recovered
message. However, if sub is not an authorized subset of some sharing of m (there are corrupted shares
in sub), there are two possibilities to take: error-detect or error-correct.

Error-detection will allow for the scheme to return ⊥, which signals that something went wrong,
and m cannot be recovered. However, error-detection comes with a liability: it enables the adversary
to thwart message recovery by corrupting a single share (as stated, this also allows for mounting a
DoS attack).

Error correction (Errx), on the contrary, seeks to recover from errors whenever the algorithm can.
It not only detects an error but also “heals” from it.

What [BDR20] proposes is to create a scheme that checks that each share presented to Recover(S)
name the same access-structure encoding A, the shares all have the same tag T ; and the shares include
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all those in K if K is a set of shares. The worst case is exponential (it inspects 2n) in the case that
corrupted shares are placed at the end of each k subset. Notice that the error correction mechanism
“corrects” the shares as it iterates over subsets of k size until it finds an honest subset and discards
any share that does not form a honest subset of k size.

3.2 ADSS with AX and verifiability

Another proposal is to “detect” corrupted shares by providing with a “proof” of each share’s honesty.
There are some mechanisms for doing so (like providing a signature with each share) [CGMA85,
BGW88, CCD88, RB89].

We note here the ones based on polynomials due to their nice algebraic properties, which allow us
to define hiding properties (the fact that the values of a polynomial of degree d in less than d points
give no information of its value in another point), error correction properties (the fact that there exists
a unique polynomial of degree d given d+2da +1 values where at most da of them are incorrect), and
they are homomorphic.

We present here both Feldman’s scheme and Pedersen’ scheme. Note that in both schemes the dealer
can commit either to the coefficients of the polynomial f(x) or to the client shares f(ai). Pedersen’s
commitments will be of the form gshρ, since gs (used in Feldman’s scheme) is not considered a real
commitment as the hiding property is not satisfied. Note, though, that Feldman’s scheme can be
implemented with Pedersen’s commitments.

• Feldman’s scheme [Fel87] : the scheme utilizes homomorphic relationships between values and
their encryptions, and using cyclic groups. The communication and computation complexity are
small, O(nλ) and O((n log n + λ)(n ∗ λ log λ)) respectively, where λ is the security parameter.
In the case of using discrete-log in finite-fields, the computational complexity is impacted by
exponentiation: gs can be performed in at most 2|x| ≤ 2|p| = 2λ multiplications mod p and at
most λ additions. The speed for the multiplication can be considered as O(λ log λ). The more
costly part of this algorithm is checking for valid shares.

• Pedersen’s scheme [Ped92] : this scheme is based on the previous one but no leakage is present.
Notice that we have to compute k commitments in order to verify a single share. This requires
less than 2 ∗ |q| ∗ k multiplications modulo p or approximately 2k multiplications per bit of the
message, if every element in Zq can be chosen as the message. The verification requires k − 1
exponentiations modulo p and the computation of one commitment. This can be done in less
than: 2∗|q|∗(k−1)+2∗|q|+(k−1) ≈ (2∗|q|∗1)∗k multiplications. This is considered, however,
a pessimistic estimate as many of the exponents in the exponentiations are rather small.

4 Time complexity of a “verifiable” STAR

STAR can be divided into these operations:

1. Randomness extraction: which can be either OPRFs operations, hash operations or any other
deterministic randomness extraction (AES-based, for example). The time complexity of this
phase depends on the scheme chosen.

2. Sorting: when executing the recovery procedure, the STAR scheme can:

• Wait for receiving n shares and sort them into subsets of k size according to the tag value
received in each share.

• Place each share in a subset of k size (in which all other shares share the same tag) the
moment it is received.

In order to properly sort the received shares, an efficient sorting algorithm can be used, such as
Merge sort (which has a best, average and worst time complexity of O(n ∗ log(n))).

3. Verifiable Secret sharing scheme: a verifiable secret sharing scheme comprises of:
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• Share creation: The operation corresponds to the “splitting” of a input secret into n shares,
where k shares are enough to recover the secret message. This operation is very efficient.
In this step, a k ammount of commitments is also computed.

• Recovery: The operation corresponds on receiving a subset of k size of shares, and recovering
the underlying secret message.

• Verifiability: this procedure can be applied to a single share, shares inside a subset of k size,
or all shares on the set of n size. It verifies that said share has not been corrupted.

4.1 Time complexity of Verifiable Secret Sharing

The algorithm consists of two phases:

• Commitments creation: Generate the needed commitments that “prove” that a share is
“honest”. This procedure is generated (it runs) once for a set of n shares. It is linear on the size
of k (it generates k commitments for a set of n shares).

• Verification of share: Verify a single share by attesting that the commitments are “honest”.
It is linear on the size of k. Notice that this phase can be expanded to verify a whole subset/set
of shares, in which case, it is O(n ∗ k) (for verifying the set of n shares) or O(k2) (for verifying
a subset of k size).

As stated, this procedure can be applied to a single share, shares inside a subset of k size, or all
shares on the set of n size. In the case of verifying shares inside a set or subset, we can define:

• Worst-case complexity: This case occurs when a corrupted share is placed at the end of the
set/subset. The cost is: cost of verifying a single-share (O(k)) * (size of set ∨ size of subset):
O(k ∗ (n ∨ k))

• Average-case complexity: If each share is equally likely to be corrupted, then the scheme
has an average case of n in simple terms. Note that the average case can be affected if the
corruption probabilities for each share vary (which is the case here as only a subset of clients can
be considered malicious): in our case, then, the average case depends on the probability of the
attacker of corrupting a set of shares and of the network on delivering them in a specific order.

• Best-case complexity: This case occurs when there is only one corrupted share per set/subset
and it is placed at the start of the set/subset. The cost is: cost of verifying a single-share (O(k))
* 1 * number of sets/subsets: O(1 ∗ (1 ∨ |{x ⊂ n : |x| = k}|))

The verification algorithm depends on the size of k, the threshold, as it generates k commitments
that are verified on each share.

5 “Smart” algorithm for STAR-VSS

ADSS with AX and verifiability (in STAR-VSS) can be executed at any time:

• Per each single share.

• Per each subset x of size k.

• Against the whole set y of size n.

We can therefore create a “smart” algorithm that:

1. Performs the recovery functionality first on a subset xi of k size. If it fails on the subset, it runs
the verification of that single subset xi.

2. The verification algorithm will remove the invalid shares (the subset r of xi), and return a subset
of size k − |r|.

3. The returned subset of size k− |r| can be used to construct a k size subset (by fetching w shares
from the set y of n size so that k − |r|+ |w| = k), and perform recovery again.
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Clients Computation Bandwidth

100k 13.8 min 6.5 GB
200k 27.2 min 13.1 GB
400k 53.8 min 26.2 GB

Table 1: Total cost for servers side aggregation: searching for top-900 heavy hitters, 256-bit length (l)
of σ.

6 Lightweight Techniques for Private Heavy Hitters: POPLAR
[BBC+21]

A different proposal for aggregating measurements is POPLAR [BBC+21], which uses incremental dis-
tributed point functions, a cryptographic primitive that builds on standard distributed point functions
(DPFs). In it, each client holds a l-bit string and a set of servers aggregates them. If each client holds
a l-bit string, with plain DPFs, the client computation and communication costs would grow as l2.
With incremental DPFs, this cost falls to linear in l. For the applications they note, they set l ≈ 256,
so this performance improvement is substantial.

As stated in [BBC+21], POPLAR increases its computational and communication costs when l-bit
string becomes longer, as each client sends each server an all-prefix DPF key with domain size l. Each
key is approximately λ ∗ l logC bits in length, where C is the number of clients and λ ≈ 128 is the size
of a PRG seed.

In some applications, the system might want to learn the most popular values over long strings.
For example, an operating-system vendor might want to learn the set of popular software binaries
running on clients’ machines that touch certain sensitive system files. In this application, client i’s
string ai ∈ 0, 1n is an x86 program, which could be megabytes long. So for this application, l ≈ 220.

When l is much bigger than λ, the authors suggest to use hashing to reduce the client-to-server
communication from ≈ λ ∗ l logC bits down to ≈ λ2 logC + l bits and the round complexity from ≈ l
to ≈ λ.

7 Comparison

Comparing both the STAR-VSS protocol and the POPLAR protocol is a difficult task as both pro-
tocols grow depending on different parameters: POPLAR increases in regards to l, the size –in bits–
of the string to search for, while STAR-VSS increases in regards to k, the threshold parameter. In
POPLAR, communication and computational costs are determined by l, and can be considered in par-
allel as servers need to communicate with each other in order to aggregate (this assumption, however,
should not be made from the client side). In STAR-VSS, the size of the string to secret-share is not
taken into account as, when using Elliptic-Curve Cryptography (ECC), it will be hashed into a scalar
representation. There is also no additional communicational cost in STAR from the server side, as the
protocol is a single-server one.

The authors of POPLAR report in their IEEE S&P talk [CG21] the numbers shown on Table 1.
The computation times shown are parallelizable.

We performed some benchmarks in Rust of the secret sharing scheme (Shamir Secret Sharing)
with verifiability (the Feldman’s scheme): the code is not optimized. The Rust implementation can
be found here: https://github.com/claucece/secret-sharing-extra. We defined the following
parameters: threshold (which is k, the subset size), and report size (which is n, the total size of the
measurements reported). In all cases by secret we used a string of 32 bytes in size. We report numbers
when using curve25519/Ristretto (shown on Table 2) and Sec256k1 (shown on Table 3) for the field and
elliptic curve operations. We ran our benchmarking on a MacBook Pro with arm64, Darwin Kernel
Version 22.3.0, Apple M1 Max chip. We are using Rust with version 1.68.0.

As seen on the tables, the numbers increase in regards to k. This is shown in Figure 1 for n =
256 over curve25519/Ristretto, and on Figure 2 (which shows that with different n, the k-growth is
proportional: the Figure is up to n = 1024 for readability). However, the growth is also depend on the
elliptic curve chosen: sec256k1 is faster than curve25519 as seen in Figure 3 for n = 256, and in Figure
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Figure 1: VSS scheme in regards to the growth of k for n = 256 when using Curve25519/Ristretto.

4 for n = 2048. Hence, the VSS scheme is efficient when k is small. In the case of STAR, we can use
this assumption as k does not need to be long (it can be k ≥ 10 and ≤ 50), and we can immediately
process subsets of k size as soon as they arrive to the single-server.

For POPLAR [BBC+21], we are using the measurements framework as defined in https://github.

com/henrycg/heavyhitters. The code compiles only for a older Rust version (we are using, hence,
1.47.0) on a older MacBook Pro 12.3.1 with 2.3 GHz Dual-Core Intel Core i5 (model I5-7360U) with
x86 64: we are using an older OS as older versions of Rust don’t compile on the newer versions of the
OS. This makes the POPLAR measurements perhaps not as accurate as the ones taken for the VSS
scheme.

Note that the times reported in Table 4 correspond to the end-to-end performance test of Poplar.
It shows the running time from the moment after the servers collect the last incremental DPF keys
from the clients until the servers produce their output. It tests both over 256-bit length strings and
512-bit length strings (we couldn’t compile the code with longer strings). As shown in the table, the
costs increase as l increases. POPLAR performs well for small strings (small l) and with the usage of
parallelization. The performance can be better understood in Figure 5.

8 Future work

While we have presented some performance measurements, the POPLAR measurements need to be
better specified: they should work with the same Rust version as the VSS measurements and on the
same OS. This is left as future ongoing work.

We have treated the VSS measurements as well on their own: we should measure them with the
whole STAR-ADSS-VSS scheme. This needs first to adapt the formalization of [BDR20] to take into
account this notion of verifiability, and measure only with the formalised algorithm. This is left as
future ongoing work.

Currently, we are developing a verifiable scheme that arrives to worst/average case time of O(log n).
It is left as future ongoing work to properly formalise it and measure it.
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Report size (n) Threshold (k) Verification Time

256 10 0.078823
25 0.19705
50 0.39504
100 0.78929
128 1.0161

512 10 0.15879
25 0.39705
50 0.79414
100 1.5918
128 2.0291

768 10 0.23787
25 0.59317
50 1.1824
100 2.3841
128 3.0356

1024 10 0.31638
25 0.78658
50 1.5812
100 3.1731
128 4.0413

1280 10 0.39412
25 0.99017
50 1.9723
100 3.9375
128 5.0440

1536 10 0.47586
25 1.1898
50 2.3707
100 4.7534
128 6.2343

1792 10 0.56573
25 1.4113
50 2.8184
100 5.6685
128 7.2657

2048 10 0.63156
25 1.5732
50 3.1592
100 6.3074
128 8.1037

Table 2: Benchmarks for the secret sharing scheme with verifiability: it shows the time for verification
of n shares using Feldman’s scheme using Curve25519/Ristretto. Numbers are reported in seconds.
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Report size (n) Threshold (k) Verification Time

256 10 0.039585
25 0.084872
50 0.16170
100 0.31496
128 0.39843

512 10 0.078473
25 0.17081
50 0.32648
100 0.63951
128 0.81151

768 10 0.11953
25 0.25948
50 0.49687
100 0.96418
128 1.2394

1024 10 0.15889
25 0.34727
50 0.65934
100 1.2817
128 1.6277

1280 10 0.19776
25 0.43309
50 0.83642
100 1.6158
128 2.0504

1536 10 0.23925
25 0.52875
50 0.99389
100 1.9495
128 2.4761

1792 10 0.28050
25 0.62505
50 1.1704
100 2.2827
128 2.9096

2048 10 0.31876
25 0.69710
50 1.3404
100 2.6018
128 3.3170

Table 3: Benchmarks for the secret sharing scheme with verifiability: it shows the time for verification
of n shares using Feldman’s scheme using curve sec256k1. Numbers are reported in seconds.
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Figure 2: Comparison of benchmarks: x-axis states the threshold sizes, y-axis states the times. The
numbers that relate to the colours represent the set of size n. This is using the times reported when
using Curve25519/Ristretto.

128100502510

0

0.2

0.4

0.6

0.8

1

T
im

e
in

se
c.

curve25519/Ristretto sec256k1

Figure 3: Comparison of benchmarks: x-axis states the threshold sizes, y-axis states the times in
seconds. The numbers that relate to the colours represent the curve choice: Curve25519/Ristretto or
sec256k1. The numbers are for n = 256.
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Figure 4: Comparison of benchmarks: x-axis states the threshold sizes, y-axis states the times in
seconds. The numbers that relate to the colours represent the curve choice: Curve25519/Ristretto or
sec256k1. The numbers are for n = 2048.

Input size Client requests Threshold Total Time

256 256 0.1% 5.507831327

512 0.1% 16.959929453

768 0.1% 36.15255669

1024 0.1% 55.856106997

1280 0.1% 86.420286407

1536 0.1% 126.5820803

1792 0.1% 155.289137682

512 256 0.1% 13.881579577
512 0.1% 38.576247141
768 0.1% 76.272295041
1024 0.1% 130.002528967
1280 0.1% 170.99829304
1536 0.1% 294.671993384
1792 0.1% 332.42823375

Table 4: Bechmarks for the POPLAR scheme: the threshold here represents that more than 0.01%
clients hold a specific string. The times are reported in seconds.
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Figure 5: Comparison of benchmarks: x-axis states the number of client request, y-axis states the
times (in seconds). The numbers that relate to the colours represent the input size l.
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